Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 1406-1415, 2022.
Article in English | WPRIM | ID: wpr-929363

ABSTRACT

We have discovered and synthesized a series of indole-based derivatives as novel sigma-2 (σ 2) receptor ligands. Two ligands with high σ 2 receptor affinity and subtype selectivity were then radiolabeled with F-18 in good radiochemical yields and purities, and evaluated in rodents. In biodistribution studies in male ICR mice, radioligand [18F]9, or 1-(4-(5,6-dimethoxyisoindolin-2-yl)butyl)-4-(2-[18F]fluoroethoxy)-1H-indole, was found to display high brain uptake and high brain-to-blood ratio. Pretreatment of animals with the selective σ 2 receptor ligand CM398 led to significant reductions in both brain uptake (29%-54%) and brain-to-blood ratio (60%-88%) of the radioligand in a dose-dependent manner, indicating high and saturable specific binding of [18F]9 to σ 2 receptors in the brain. Further, ex vivo autoradiography in male ICR mice demonstrated regionally heterogeneous specific binding of [18F]9 in the brain that is consistent with the distribution pattern of σ 2 receptors. Dynamic positron emission tomography imaging confirmed regionally distinct distribution and high levels of specific binding for [18F]9 in the rat brain, along with appropriate tissue kinetics. Taken together, results from our current study indicated the novel radioligand [18F]9 as the first highly specific and promising imaging agent for σ 2 receptors in the brain.

2.
Acta Pharmaceutica Sinica B ; (6): 308-315, 2022.
Article in English | WPRIM | ID: wpr-929295

ABSTRACT

Monoacylglycerol lipase (MAGL) is a pivotal enzyme in the endocannabinoid system, which metabolizes 2-arachidonoylglycerol (2-AG) into the proinflammatory eicosanoid precursor arachidonic acid (AA). MAGL and other endogenous cannabinoid (EC) degrading enzymes are involved in the fibrogenic signaling pathways that induce hepatic stellate cell (HSC) activation and ECM accumulation during chronic liver disease. Our group recently developed an 18F-labeled MAGL inhibitor ([18F]MAGL-4-11) for PET imaging and demonstrated highly specific binding in vitro and in vivo. In this study, we determined [18F]MAGL-4-11 PET enabled imaging MAGL levels in the bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver cirrhosis; we also assessed the hepatic gene expression of the enzymes involved with EC system including MAGL, NAPE-PLD, FAAH and DAGL that as a function of disease severity in these models; [18F]MAGL-4-11 autoradiography was performed to assess tracer binding in frozen liver sections both in animal and human. [18F]MAGL-4-11 demonstrated reduced PET signals in early stages of fibrosis and further significantly decreased with disease progression compared with control mice. We confirmed MAGL and FAAH expression decreases with fibrosis severity, while its levels in normal liver tissue are high; in contrast, the EC synthetic enzymes NAPE-PLD and DAGL are enhanced in these different fibrosis models. In vitro autoradiography further supported that [18F]MAGL-4-11 bound specifically to MAGL in both animal and human fibrotic liver tissues. Our PET ligand [18F]MAGL-4-11 shows excellent sensitivity and specificity for MAGL visualization in vivo and accurately reflects the histological stages of liver fibrosis in preclinical models and human liver tissues.

SELECTION OF CITATIONS
SEARCH DETAIL